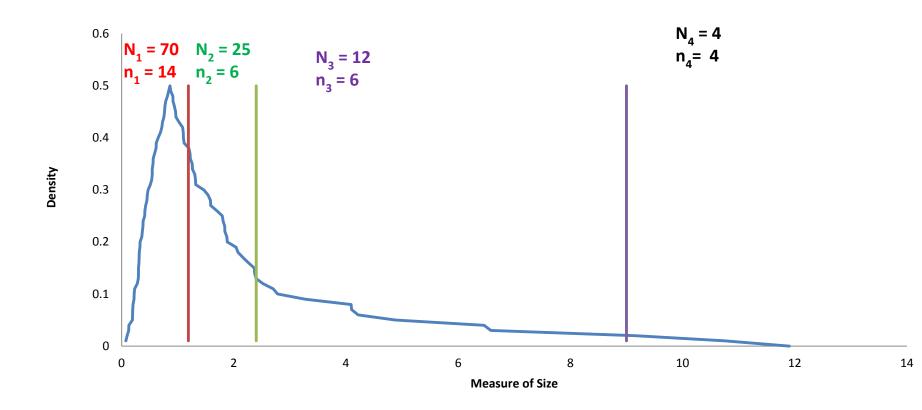
Challenges in Conducting Nonresponse Bias Analyses for Business Surveys: A Perspective from the U.S. Census Bureau


Katherine Jenny Thompson Statistical Methods and Sample Design Staff Office of Statistical Methods and Research for Economic Programs Presented at the Fourth International Conference on Establishment Surveys Invited Overview Lectures – Session 6

SET THE SCENE

Fictional Stratified Business Population

Underlying Assumptions

Stratum Number	Population Units (N _h)	Sampled Units (n _h)	Stratum Parameters
1	70	14	μ ₁ , σ ₁
2	25	6	μ₂, σ₂
3	12	6	μ ₃ , σ ₃
4	4	4	$\mu_{4,}\mu_{5,}\mu_{6,}\mu_{7}$

- $\mu_1 \neq \mu_2 \neq \mu_3 \neq \{\mu_{4,} \mu_{5,} \mu_{6,} \mu_7\}$ (or why stratify???)
- The "certainty" units in stratum 4 are unique
 - Self-representing
 - There aren't very many "large" units in the population
- The auxiliary variable used for stratification variable is positively correlated with the survey characteristic(s) of interest

Design Stage

Population Units (N _h)	Sampled Units (n _h)	Stratum Parameters	Sampling Rate n _h /N _h	Design Weight
70	14	μ1, σ1	14/70 = 0.2	70/14 = 5
25	6	μ₂, σ₂	6/25 = 0.24	25/6 = 4.17
12	6	μ ₃ , σ ₃	6/12 =0.50	12/6 = 2
4	4	$\mu_{4_{\rm r}}\mu_{5_{\rm r}}\mu_{6_{\rm r}}\mu_{7}$	4/4 = 1.00	4/4 = 1

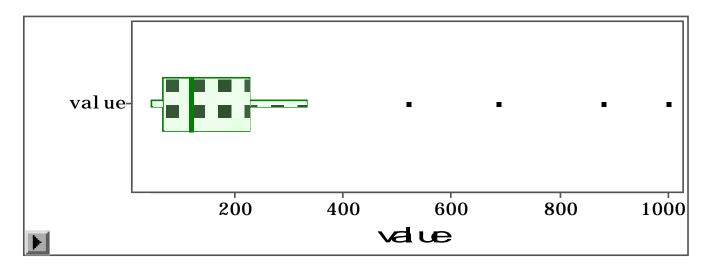
"Reality"/Challenges

Population Units (N _h)	Sampled Units (n _h)	Respondent Units (r _h)	Sampling Rate n _h /N _h	Response Rate r _h /n _h
70	14	7	14/70 = 0.2	7/14 = 50%
25	6	3	6/25 = 0.24	3/6 = 50%
12	6	6	6/12 =0.50	6/6 = 100%
4	4	3	4/4 = 1.00	3/4 = 75%

- Larger units very different from smaller units
- Larger units more likely to respond than smaller units
- "Representative" subsample?

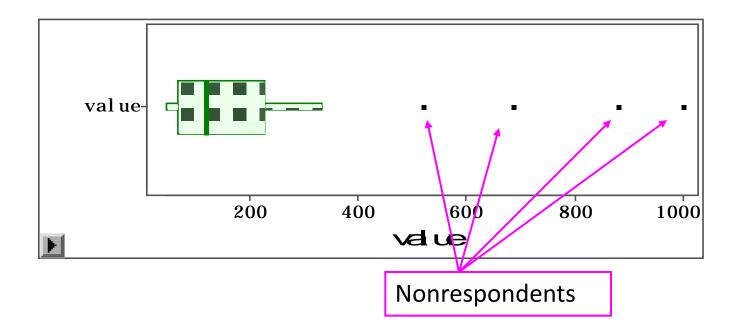
In General

- Business populations are positively skewed
- Business data may not be positively skewed
 - Sales, Payroll, Employment
 - Positively skewed, non-negative by definition
 - Income
 - Real valued (bell shaped curve)
- Estimates of interest generally TOTALS

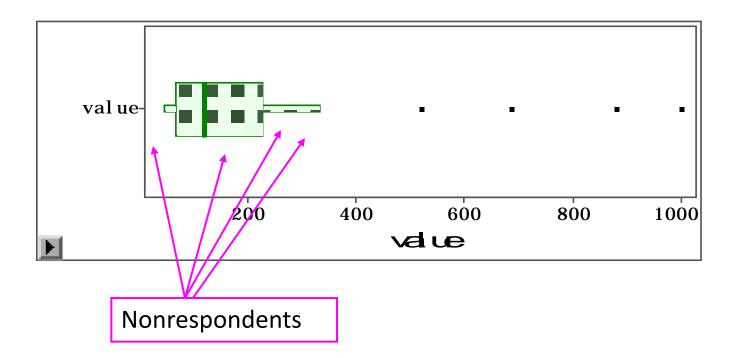


Not All Units Are "Equal"

- Unit response rate
 - Unweighted proportion of responding units
 - One per program/survey
- Total Quantity Response Rate
 - <u>weighted</u> proportion of an estimate reported by responding units and from equivalent quality sources
 - 1 rate per key item/program (can be several)

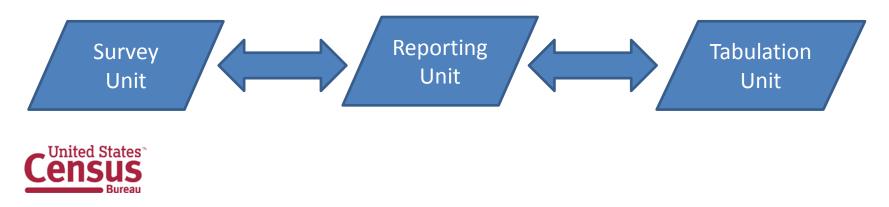

Return to Fictional Example

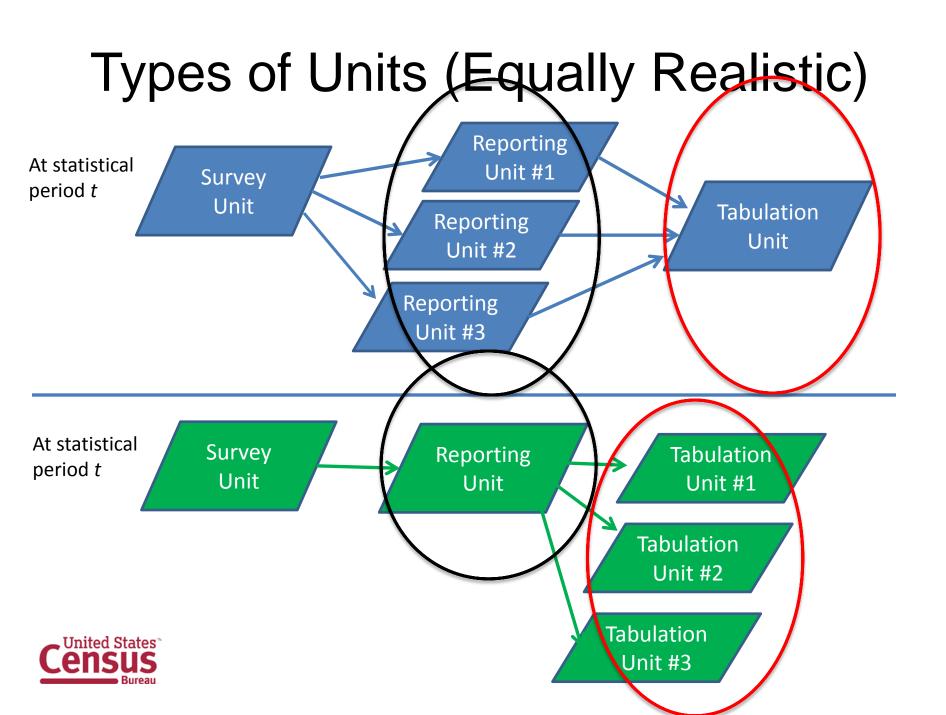
- Skewed business population
- 30 sampled units
- 4 units provide \approx 47% of TOTAL Value
 - Certainty units (census)
 - Noncertainty units (sampled)


Not All Units Are "Equal"

- Unit response rate = $26/30 \approx 87\%$
- Total Quantity Response Rate (Value) = $3423/6507 \approx 53\%$

Not All Units Are Equal


- Unit response rate = $26/30 \approx 87\%$
- Total Quantity Response Rate (Value) = $6023/6507 \approx 93\%$



Types of Units

Type of Unit	Definition	Established By
Survey Unit	An entity selected from the underlying statistical population of similarly-constructed units	Frame
Reporting Unit	An entity from which data are collected	Sampled unit(s) providing the data
Tabulation Unit	An entity that houses the data used for estimation/tabulation	Program managers and/or methodologists

Simplest Case

One More Challenge

Provide the number of employees working at this establishment on March 15, 2011

Category		Value
1a. Production workers	Detail items	<to be="" collected=""></to>
1b. Other employees		""
1c. Total workers	← Total item	""

- Total items collected from each respondent
 - Administrative data may be available for some units
- Detail items
 - Depend on category (industry)
 - May not be available from respondent

Getting More Formal NONRESPONSE BIAS ANALYSIS CONSIDERATIONS

The Issues

- Administrative Standards/Requirements
- Statistical Issues
 - Data quality
 - Representatives of respondent set
 - Response mechanism
 - Mitigation strategies
 - Behavioral protocols
 - Statistical adjustments
 - Impact of nonresponse bias on estimates

Nonresponse Bias (Total)

 $\hat{Y} = N\overline{y}_n = N\left(\sum_{i=1}^n y_i / n\right)$

NONRESPONDENTS (nr units)

$$\hat{Y}_r = N\left(\sum_{i=1}^r y_i\right) = \frac{N}{n} \left(r\overline{y}_r\right)$$

$$\hat{Y}_{nr} = N\left(\sum_{i=r+1}^{n} y_i\right) = \frac{N}{n}\left(nr(\bar{y}_{nr})\right)$$

Observed (respondent data)

Not observed (nonrespondent data)

Some (Simplified) Formulae

• Bias of unadjusted total (respondent data)

$$B = N(\overline{y}_{r}) - N(\overline{y}_{n})$$

$$= N\left\{ (\overline{y}_{r}) - \left[\left(\frac{r}{n} \right) (\overline{y}_{r}) + \left(\frac{nr}{n} \right) (\overline{y}_{nr}) \right] \right\}$$

$$= N\left\{ \frac{nr}{n} (\overline{y}_{r} - \overline{y}_{nr}) \right\}$$

- Unbiased if
 - Complete response
 - Mean value per respondent = mean value per nonrespondent \Rightarrow Items may be affected by nonresponse bias differently

Stochastic View

$$\boldsymbol{E}(\overline{\boldsymbol{y}}_{r}-\overline{\boldsymbol{y}}_{n})=\frac{\boldsymbol{\sigma}_{yp}}{\overline{\boldsymbol{p}}}$$

Where σ_{yp} is the covariance between the survey variable, *y*, and the response propensity, *p*

• What mechanisms produce the covariance?

Source: Tucker, Dixon, and Cantor (2007). Measuring the Effects of Unit Nonresponse in Establishment Surveys. Third Conference on Establishment Surveys (ICES III)

ARE YOU READY TO CONDUCT A NONRESPONSE BIAS ANALYSIS?

The "Structured" Detective Work

- 1. Determine the potential for nonresponse bias
- 2. Examine the extent of nonresponse bias
- 3. Understand the response mechanism
- 4. Mitigate the nonresponse bias

Repeat, repeat, repeat...

DETERMINE THE POTENTIAL FOR NONRESPONSE BIAS

Administrative requirements...

In Case You Weren't Listening to Brian

OMB Standard 1.3 (Survey Response Rates)

- Agencies must design the survey to achieve the highest practical rates of response...to ensure that survey results are representative of the target population so that they can be used with confidence to inform decisions.
- Nonresponse bias analyses must be conducted if unit or item response rates suggest the potential for bias to occur.

More Definitions and Concepts

- Respondent
- Reported Data
- Equivalent Quality, but Not Reported Data
- Required Data Items

What is a Respondent?

A respondent is an *eligible* unit for which

- an attempt was made to collect data;
- the unit belongs to the target population;
- the unit provided *sufficient data* to be classified as a response.

[Source: Census Bureau Standard: Response Rate Definitions, Version 1.0.]

Reported Vs. Equivalent Quality

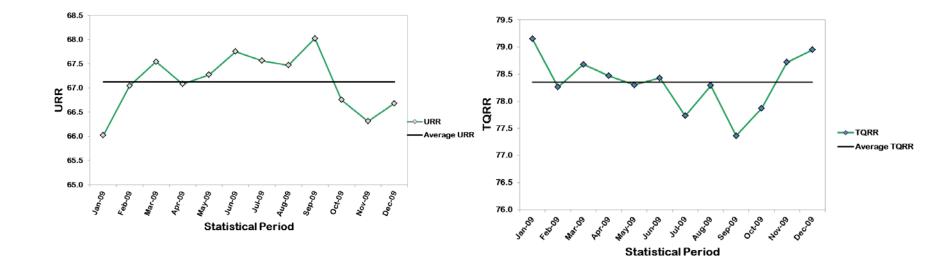
- Reported Data are directly received from the reporting unit for the <u>survey questionnaire</u> in the data collection period.
- Equivalent Quality (but Not Reported) Data are indirectly received from the reporting unit or the tabulation unit in the data collection period

Response Rates (Refresher)

 Unit Response Rate (URR) – the rate of the total <u>unweighted</u> number of "responding" units to the total number of sampled units eligible for tabulation.

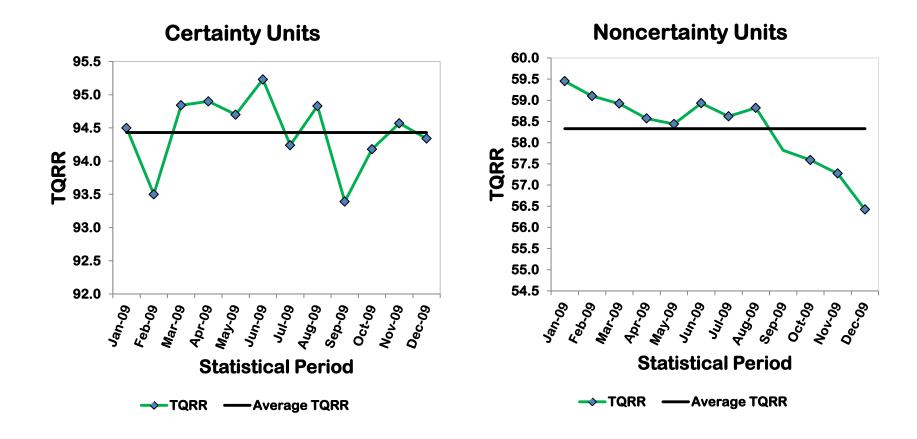
- 1 rate per program

- Total Quantity Response Rate (TQRR) the weighted proportion of a key estimate reported by responding units and from equivalent quality sources.
 - 1 rate per key item/program (can be several)



Response Rate Analyses

- Compute the rates
 - For program
 - Different (meaningful) subgroups
 - Sector/Industry
 - Certainty/Noncertainty status
- Analyze the rates
- Monitor the rates over time


URR and TQRR (Sales)

Source: Monthly Retail Trade Survey

TQRR for Sales: By Certainty and Noncertainty Status

States Source: Monthly Retail Trade Survey

Response Rates as Process Control Measures DIGRESSION #1

Response Rates as Quality Measures

- Assess the state of the process
- Understand the response rate process capability
- Monitor over time
- González, Y. and Oliver, B. (2012). Producing Control Charts to Monitor Response Rates for Business Surveys in the Economic Directorate of the U.S. Census Bureau. FCSM Research Conference.
- Thompson, Katherine J. and Oliver, B. (2012). Response Rates in Business Surveys: Going Beyond the Usual Performance Measure . Journal of Official Statistics.

P-chart for URR (Fictional Series) 0.8 0.78 0.76 0.74 0.72 0.7 U.U8 0.66 Statistical Period

- Time-series plot of URR
- Centerline (process average)
- Control Limits

Understanding the Response Mechanism DIGRESSION #2

Response Mechanisms

- Ignorable
 - Model can "explain" the response mechanism
 - Auxiliary variable (covariate) that "explains" nonresponse is not the studied variable(s)
 - Nonresponse can be "ignored" after the estimates are adjusted with respect to the model
- Nonignorable
 - Probability of response depends on studied variable (nonresponse systematic, not random)
 - Difficult (if not impossible) to correct through adjustment

Ignorable Response Mechanism #1: Missing Completely at Random (MCAR)

- Uniform
- Probability of response equal and independent for all units in sample
- Not terribly realistic

Ignorable Response Mechanism #2: Missing at Random (MAR)

- Probability of response depends on auxiliary variable, not directly related to characteristic(s) of interest
- Probability of response differs by adjustment cell
 - Adjustment cells may or may not be strata
 - Same probability of response for all units in an adjustment cell

Ignorable Response Mechanism #3: Covariate – Dependent Missing

 Probability of response depends on auxiliary variable, not characteristic(s) of interest (more general formulation)

 $- \mathsf{P}^{(\mathsf{M}_{i} | \mathsf{Y}, \mathsf{X})} = \mathsf{P}(\mathsf{M}_{i} | \mathsf{X})$

- Probability of response differs by unit
- Probability of response predicted by level of auxiliary variable

Options (Ignorable Unit Nonresponse)

- Reweighting
 - Divide sample into weighting cells
 - Increase respondents' weights to represent sample

- Imputation
 - Divide sample into imputation cells
 - Create complete records

Notation (Reweighting)

Adjustment factor Adjustment Cell Sampling weight

$$w_i^{p^*} = f_i^p \times \tilde{w}_i$$

 $f_i \ge 1$ if $J_i^p = 1$ (unit *i* responded) $f_i = 0$ if $J_i^p = 0$ (unit *i* did not respond)

$$\hat{Y}_{adj} = \sum_{p} \sum_{i \in p} f_{i}^{p} J_{i}^{p} w_{i} y_{i} = \sum_{p} \sum_{i \in p} w_{i}^{p*} y_{i}$$

Notation (Imputation)

Imputation factor Auxiliary variable (covariate)

$$y_i^{p^*} = f_i^{p^*} \times x_i$$

$$\hat{Y}_{imp} = \sum_{p} \sum_{i \in p} w_i y_i J_i^{p} + \sum_{p} \sum_{i \in p} w_i y_i^{p*} (1 - J_i^{p})$$

Reweighting (Mitigation Strategy 1)

Advantages

- Statistically valid if response model is correct
- Easy to correctly compute variance estimates of totals
- Preserves multivariate relationships between items

Disadvantages

- Can increase the variance
- Not valid if response set is not a representative random sample

Imputation (Mitigation Strategy 2)

Advantages

- Can develop "best" predictive model for each item y
- Can set a hierarchy of imputation methods to attempt in expected order of reliability
- Ratio imputation model parameters can be B.L.U.E.

Disadvantages

- Predictive model may not be very good
- Does not preserve multivariate relationships
- Difficult to correctly compute variance estimates (especially if composite imputation is used)

Adjustment Cells

- Auxiliary variables (categorical)
 - Available data for all sampled units
 - "Sufficient" respondents in each category
 - May be recoded continuous variables
- Hope
 - Auxiliary variable is correlated with response propensity; and
 - Auxiliary variable is correlated with outcome

Adjustment Effects on Mean or Totals

Auxiliary		Auxiliary Variable Association with Outco (Prediction)					
Variable		Low	High				
Association with Response (Propensity)	Low	Bias: Variance:	Bias: Variance: ↓				
	High	Bias: Variance: ↑	Bias:↓ Variance:↓				

Little, R.J. and Vartivarian, S. (2005). Does Weighting for Nonresponse Increase The Variability of Survey Means? *Survey Methodology*, **31**, pp. 161-168.

Certainty Units

Proposition: Nonresponding certainty units <u>always</u> cause some nonresponse bias

• Unique quality \rightarrow guaranteed inclusion in sample

• Nonignorable nonresponse

At Last...the Promised Topic

- This talk is titled "Challenges in Conducting Nonresponse Bias Analyses for Business Surveys: A Perspective from the U.S. Census Bureau"
- Insights into "tried and true" (aka) methods

 Cites older analyses (before 2010)
 Nothing "cutting edge"

COMPARE RESPONDENTS AND NONRESPONDENTS ON FRAME VARIABLES

Studying internal variation within the data collection

Adjustment Effects on Mean or Totals

Auxiliary		Auxiliary Variable Association with Outcom (Prediction)						
Variable(s)		Low	High					
Association with Response (Propensity)	Low	Bias: Variance:	Bias: Variance: ↓					
	High	Bias: Variance: ↑	Bias:↓ Variance:↓					

Response Propensity Analysis

- Are categorical variables used to form adjustment cells predictive of unit nonresponse?
 - Logistic regression analysis
- Could other variable be used to form adjustment cells?
- Do response propensities differ between cells?
 - Assess by comparing unit response rates

Are Categorical Variables Used To Form Adjustment Cells Predictive Of Nonresponse?

Model:
$$\log\left(\frac{P(I_i^p = 1)}{1 - P(I_i^p = 1)}\right) = \beta^p X_i^p + \varepsilon_i^p$$

Test:

$$H_0: \beta^p = 0$$
$$H_A: \beta^p \neq 0$$

Logistic Regression Models

- Want to reject the null hypothesis
 Propensity model holds
- Need to account for complex survey design – PROC SURVEYLOGISTIC[®]
 - Noncertainty units only
- Minimum cell size requirements (challenge!)
 - Actual sample size
 - Effective sample size

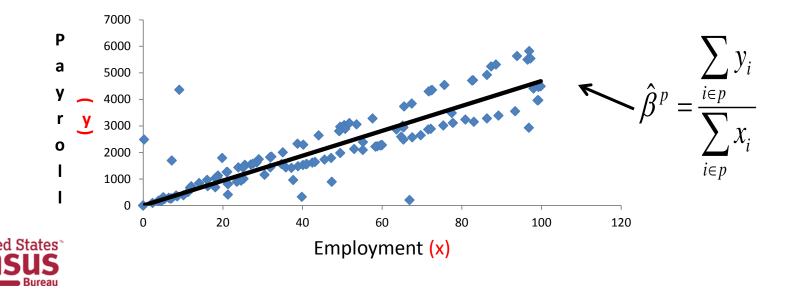
Annual Capital Expenditures Survey

	Percentage of Weighting Cells Where Propensity Model Held										
	Size										
Lorgost	Class Stratum	2002	2003	2004	2005	2006					
Largest companies	2A	84.1	78.3	84.1	80.3	82.7					
	2B	78.2	65.6	72.1	73.3	78.8					
Smallest	2C	76.0	52.0	69.0	63.3	70.0					
Companies	2D	44.7	27.9	34.1	31.5	30.3					

Do Response Propensities Differ Between and Within Cells?

Adjustment Effects on Mean or Totals

Auxiliary		Auxiliary Variable Association with Outco (Prediction)					
Variable(s)		Low	High				
Association with Response (Propensity)	Low	Bias: Variance:	Bias: Variance: ↓				
	High	Bias: Variance: ↑	Bias:↓ Variance:↓				


Response Model Assessment: Prediction Model Evaluation

Model:

Test:

 $H_0: \beta^p = 0$ $H_A: \beta^p \neq 0$

 $Y_i = \beta^p X_i^p + \mathcal{E}_i^p$

Prediction Model/Regression Analysis

- Want to reject the null hypothesis
- WLS linear regression no intercept model **Trend** $y_{ti}^* = \beta y_{t-1,i} + \varepsilon_{ti}, \varepsilon_{ti} \sim (0, y_{t-1,i}\sigma^2)$ **Auxiliary** $y_{ti}^* = \beta x_{ti} + \varepsilon_{ti}, \varepsilon_{ti} \sim (0, x_{ti}\sigma^2)$
- Minimum cell size requirements (challenge!)
 - Actual sample size
 - Effective sample size

Prediction Model/Regression Analysis

- Need to account for the complex survey design – PROC SURVEYREG[®]
 - Noncertainty units only
- Want model to be highly predictive
 - Model R² = measure of "predictive power" of auxiliary variable on item of interest
- Adjustment cell as "instrumental variable"

Example: ACES

	Percentage of Weighting Cells Where Prediction Model Held										
	Size	Survey Year									
Largost	Class Stratum	2002	2003	2004	2005	2006					
Largest companies	2A	93.8	93.1	92.6	93.3	94.8					
	2B	85.3	89.9	84.1	78.9	88.7					
Smallest	2C	77.0	74.6	73.6	80.8	74.6					
Companies →	2D	56.1	45.9	56.3	52.4	58.7					

ens

Bureau

Are the Respondents a Random Subsample Within Adjustment Cell?

- Assessing the assumption of "ignorable" nonresponse
- Need auxiliary variables available for all sampled units
 - Proxy variables for characteristic(s) of interest
- Adjustment cells may not be strata
 Must account for differential sampling

Are the Respondents a Random Subsample Within Adjustment Cell?

- Are the respondent-based means different from the full-sample means?
- Are respondents systematically different from nonrespondents?

Examining the "Balance"

$$H_0: \mu_R^p = \mu_n^p$$
$$H_A: \mu_R^p \neq \mu_n^p$$

- Are the respondent-based means different from the full-sample means?
- Measured on auxiliary variables

Examining the "Distance"

$$H_0: \mu_R^p = \mu_{NR}^p$$
$$H_A: \mu_R^p \neq \mu_{NR}^p$$

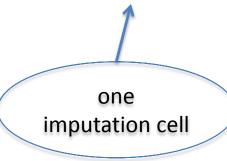
- Are respondents systematically different from nonrespondents?
- Measured on auxiliary variables

Examining the "Distance"

$$H_0: \mu_R^p = \mu_{NR}^p$$
$$H_A: \mu_R^p \neq \mu_{NR}^p$$

- Two-sample t-tests on frame variable
 - Performed within adjustment cell p
 - Cross-sectional and longitudinal analysis

T-tests


- Want to fail to reject the null hypothesis
- Need to account for complex survey design
 - Weighted unbiased estimates
 - Complex survey variances
 - Noncertainty units only
- Need "sufficient" observations in adjustment cell
 - Respondents and Nonrespondents
 - Challenge for
 - "Large" unit strata (few units to begin with)

High nonresponse strata (large variances)

Quarterly Services Survey (QSS)

		2004			2005				
Sector		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
51	Total Imputation Cells	12	12	12	12	12	12	12	12
51	Different Means($\mu_R \neq \mu_{NR}$)	0	2	1	0	2	1	1	1

Cross-sectional Analysis

			2004			2005				
Sector		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
51	Total Imputation Cells	12	12	12	12	12	12	12	12	
51	Different Means($\mu_R \neq \mu_{NR}$)	0	2	1	0	2	1	1	1	

- Test whether the number of cells with different respondent and nonrespondent means is larger than expected
- No evidence of systematic difference in mean receipts

Longitudinal Analysis

			2004 2005							
Sector		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
51	Total Imputation Cells	12	12	12	12	12	12	12	12	
51	Different Means($\mu_R \neq \mu_{NR}$)	0	2	1	0	2	1	1	1	

- Examine the cells with significantly different means across quarters
- Identify cells that exhibit "consistent" differences
 - Imputation cell 512000T (5 of 8 quarters)

Chi-Squared Tests for Independence

	Respondents	Nonrespondents	
$0 < weight < P_{33}$	r ₁₁	r ₁₂	r _{1∙}
$P_{33} \le weight < P_{66}$	r ₂₁	r ₂₂	r₂•
$P_{66} \leq weight$	r ₃₁	r ₃₂	r _{3∙}
	r _{•1}	r _{•2}	r

PROC SURVEYFREQ[®]

- Want to fail to reject null hypothesis

Noncertainty units only

Sensitivity Analysis

- Presented techniques require auxiliary variables
 - Available for all sampled units
 - Correlated with characteristics
- Other options (sensitivity analysis)
 - Quantile regression (Tucker and Dixon, 2007)
 - "Influence" functions examine contribution of each weighted observation to tabulated total

A FEW OTHER APPROACHES: SOME CONSIDERATIONS

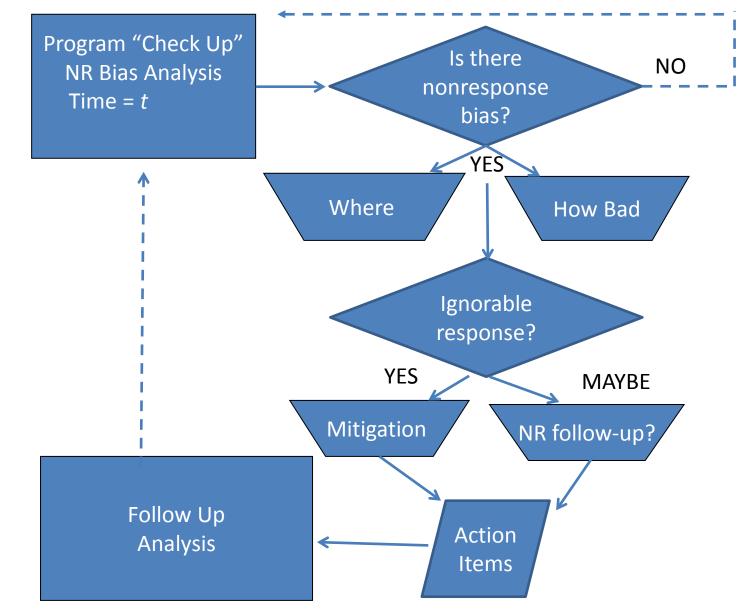
Comparison to Other Estimates – Benchmarking to Other Programs

- Alternative estimates may or may not be independent
- Definitions between programs may not agree (caution advised)
- Big assumption that other set of estimates is "superior" to studied program with respect to sampling and/or measurement errors

Benchmarking Survey Estimates to those from Another Data Source

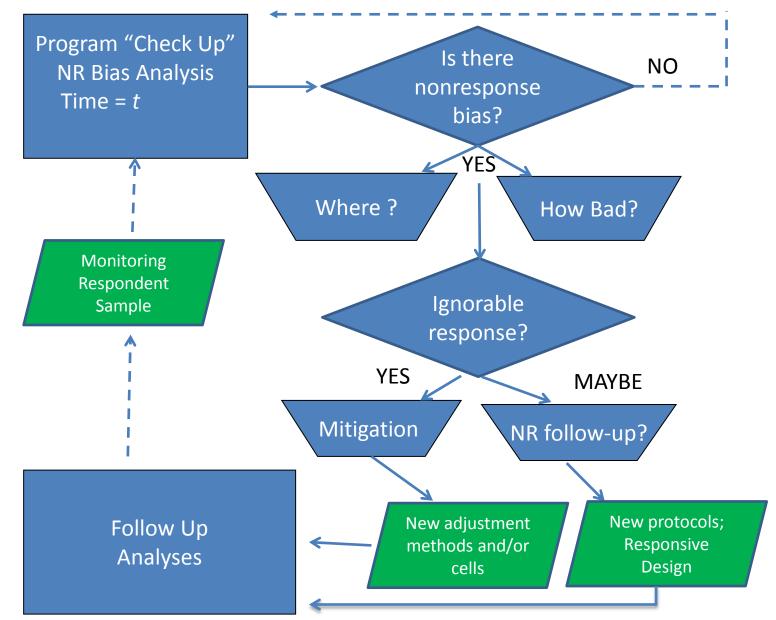
- Compare linked microdata
 - Same units, other programs
 - Administrative data (where feasible)
 - Same cautions apply with respect to definitions for items
- Compare early and late respondents on key estimates
 - Not studied extensively for business surveys

MAKING NONRESPONSE BIAS ANALYSIS EFFECTIVE


We Did It, Now What?

Official Disclaimer

The purpose of this presentation is to inform interested parties of research and to encourage discussion of work in progress. Any views expressed are those of the author and not necessarily those of the U.S. Census Bureau.



Objectives of NR Bias Analysis

United States

Useful Outcomes of NR Bias Analysis

Being Pro-Active

- Monitor respondent sample during collection to avoid nonresponse bias
 - P-charts of unit response rates
 - Contingency table analysis
 - R-indicators
- Especially for nonignorable nonresponse
 - Study response contact strategies
 - Qualitative focus groups, company visits
 - Quantitative using paradata
 - Responsive designs

The Beginning...

- Initial Analysis (Nonresponse Bias Study)
 Action items
- Corrective measures/process changes
 Assess over time using the same analysis tools
- Monitor stable/in-control process
 - Collaborative effort between methodologists and subject-matter experts

Katherine.J.Thompson@census.gov

